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• Small currents can result in finite  α

• Finite  α  can result from local dissipative
action

• Electronic functions generally rely on  β
properties

• Often  β/k0  >>  α /k0 ,  a desirable relation

α    and    β    Effects
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Conversion of Microscopic Action into
Macroscopic Tensor

• Tensors may be developed to describe dielectric,
ferroelectric, magnetic, ferromagnetic, chiral, or
other properties

• Tensors may correspond to non-Hermitian
properties - critical for characterizing lossy media

• Tensors have been used successfully in a recent
Green’s function based self-consistent code
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Nanocomposites and Media Tensors

• For nanostructures with size  a << λ  and  a << l ,
where l is the characteristic layer or surface area
size, a macroscopic tensor reduction can be made

• For   a "  λ  and  a << l , a local detailed field
description is required

• For   a << λ  and  a "  l , a tensor is possible, with its
affects needed in partitions ∆l

• For   a >> λ  and  a << l , a geometric optics
approach is acceptable
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Nanocomposite   Inclusions

• Particles or voids, thin wire structures, shaped
metallic surfaces, ellipsoids of revolution and other
volumetric objects

•  Specific structures could include helicoidal
bianisotropic material crystal inclusions, mobius
wire and surface coils of various periods, chiral
omega objects, high µ permeability particles, split
ring-post objects for simultaneous  ε < 0 and  µ < 0
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Propagation - Box Width Effect: γ  for Dielectric Substrate
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Nonreciprocal  Propagation  - H0  In Surface & Normal to  γ
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Nonreciprocal  Propagation  -  H0  Normal to Surface
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Nonreciprocal  Propagation  -  H0  Parallel to  γ
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Propagation in Simultaneous Magnetic & Electric Crystal
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Propagation in Simultaneous Ferro - Magnetic & Electric Layers
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Permeability  Transformation  for  Ferrite  Tensor
Arbitrary  H0  Orientation

See:  C. M. Krowne, “Theoretical Considerations for Full-Wave Electromagnetic-Media Interactions in Layered
Structures with Ferroelectric or Ferromagnetic Materials,”  Invited paper, Proc. SPIE, Vol. 4097, pp. 70-84, July 2000.
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Permittivity  Transformation  for  Electric  Crystal  Tensor
Arbitrary  Crystal  Orientation

See:  C. M. Krowne, “Theoretical Considerations for Finding Anisotropic Permittivity in Layered
Ferroelectric/Ferromagnetic Structures from Full-Wave Electromagnetic Simulations,”  Invited paper, Microwave &

Optical Technology Letters, to be published, Jan. 5, 2000.
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Permittivity  Ferroelectric  Tensor
Principal  Axis  Crystal  Orientation

 See:  C. M. Krowne, “Theoretical Considerations for Finding Anisotropic Permittivity in Layered

Ferroelectric/Ferromagnetic Structures from Full-Wave Electromagnetic Simulations,”  Invited paper, Microwave &
Optical Technology Letters, to be published, Jan. 5, 2000.
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Dispersion  or  Extraction
• Tensors can be used for direct calculations, obtaining

dispersions diagrams, impedances, fields
C. M. Krowne, “Full-Wave Spectral Green’s Function Integral Equation Calculation of Coplanar Ferroelectric Thin
Film Transmission Structures,” Microwave Optical Technology Letts., Vol. 26, no. 3, pp. 187-192, Aug. 5, 2000.

• Tensors may also may be used for reverse calculations,
obtaining from  γ = α + jβ ,  permittivity, permeability,
and other parameters
1.  C.  M.  Krowne,  S.  W. Kirchoefer, and J. M. Pond, “Anisotropic Permittivity Extraction from Phase Propagation
Measurements Using an Anisotropic Full-Wave Green’s Function Solver for Coplanar Ferroelectric Thin Film
Devices,” IEEE Microwave Theory & Techniques Dig., pp. 1193-1196, June 14, 2000.

2. C. M. Krowne, “Theoretical Considerations for Full-Wave Electromagnetic-Media Interactions in Layered
Structures with Ferroelectric or Ferromagnetic Materials,” Invited paper, Proc . SPIE (Soc. Photo-Optical Instrum .

Engin .), Complex Mediums, Microwave Materials, Vol. 4097, pp. 70-84, July 30, 2000.

3. C. M. Krowne, “Theoretical Considerations for Finding Anisotropic Permittivity in Layered
Ferroelectric/Ferromagnetic Structures from Full-Wave Electromagnetic Simulations,” Microwave Optical
Technology Letts.,  Jan. 5, 2001.



Meta - Materials  Workshop

Extraction of  ε  and  α
•  ε  tensor can be found by doing the calculations

in the reverse direction

•  α  is obtained from the s-parameter measure-
ments and a direct calculation from the SD code.

C. M. Krowne, M. Daniel ,  S.  W. Kirchoefer, and J. M. Pond, “Anisotropic Permittivity and Attenuation
Extraction from Phase Propagation Measurements Using an Anisotropic Full-Wave Green’s Function Solver for

Coplanar Ferroelectric Thin Film Devices,” IEEE Trans. Microwave Th. & Tech., submitted Sept. 2000.

- Surface resistivity may be extracted if the dyadic Green’s function modification is established
     uniquely for the structure under consideration.
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Summary

• Tensors can be obtained for the different microscopic
descriptions of the meta - materials

• These tensors can be inserted into the spectral domain
code to allow direct and reverse calculations of
propagation behavior

• Device design or diagnosis can then occur


